The Yeast Motor Protein, Kar3p, Is Essential for Meiosis I
نویسندگان
چکیده
The recognition and alignment of homologous chromosomes early in meiosis is essential for their subsequent segregation at anaphase I; however, the mechanism by which this occurs is unknown. We demonstrate here that, in the absence of the molecular motor, Kar3p, meiotic cells are blocked with prophase monopolar microtubule arrays and incomplete synaptonemal complex (SC) formation. kar3 mutants exhibit very low levels of heteroallelic recombination. kar3 mutants do produce double-strand breaks that act as initiation sites for meiotic recombination in yeast, but at levels severalfold reduced from wild-type. These data are consistent with a meiotic role for Kar3p in the events that culminate in synapsis of homologues.
منابع مشابه
The Kar3-interacting protein Cik1p plays a critical role in passage through meiosis I in Saccharomyces cerevisiae.
Meiosis I in Saccharomyces cerevisiae is dependent upon the motor protein Kar3. Absence of Kar3p in meiosis results in an arrest in prophase I. Cik1p and Vik1p are kinesin-associated proteins known to modulate the function of Kar3p in the microtubule-dependent processes of karyogamy and mitosis. Experiments were performed to determine whether Cik1p and Vik1p are also important for the function ...
متن کاملIncreased ploidy and KAR3 and SIR3 disruption alter the dynamics of meiotic chromosomes and telomeres.
We investigated the sequence of chromosomal events during meiotic prophase in haploid, diploid and autotetraploid SK1 strains of Saccharomyces cerevisiae. Using molecular cytology, we found that meiosis-specific nuclear topology (i.e. dissolution of centromere clustering, bouquet formation and meiotic divisions) are significantly delayed in polyploid SK1 meiosis. Thus, and in contrast to the si...
متن کاملThe Minus End-Directed Motor Kar3 Is Required for Coupling Dynamic Microtubule Plus Ends to the Cortical Shmoo Tip in Budding Yeast
The budding yeast shmoo tip is a model system for analyzing mechanisms coupling force production to microtubule plus-end polymerization/depolymerization. Dynamic plus ends of astral microtubules interact with the shmoo tip in mating yeast cells, positioning nuclei for karyogamy. We have used live-cell imaging of GFP fusions to identify proteins that couple dynamic microtubule plus ends to the s...
متن کاملLoss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations.
The kinesin-related products of the CIN8 and KIP1 genes of Saccharomyces cerevisiae redundantly perform an essential function in mitosis. The action of either gene-product is required for an outwardly directed force that acts upon the spindle poles. We have selected mutations that suppress the temperature-sensitivity of a cin8-temperature-sensitive kip1-delta strain. The extragenic suppressors ...
متن کاملThe Kar3p and Kip2p motors function antagonistically at the spindle poles to influence cytoplasmic microtubule numbers.
Microtubules provide the substrate for intracellular trafficking by association with molecular motors of the kinesin and dynein superfamilies. Motor proteins are generally thought to function as force generating units for transport of various cargoes along the microtubule polymer. Recent work suggests additional roles for motor proteins in changing the structure of the microtubule network itsel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 139 شماره
صفحات -
تاریخ انتشار 1997